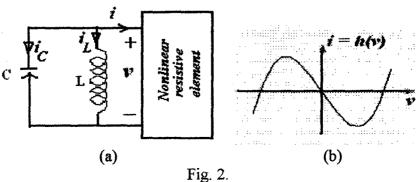

Full Marks: 70 Time: 3 Hrs

- i) Answer any five questions taking at least one from Group A
- ii) Questions are of equal value
- iii) Credit will be given to brief and to the point answers

1 (a) Two phase plots are given in the Fig. 1 (a) and (b). Match those two plots with the two equations given as (1a) and (1b) and justify your answer.

$$(1a) \dot{x}_1 = x_2$$


$$\dot{x}_2 = -x_2 - \sin(x_1)$$

(1b)
$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = (1 - x_1^2)x_2 - x_1$

(b) A dynamic system is represented by the equation $\ddot{y} + \dot{y} + y - y^2 = 0$. Find the equilibrium points and sketch the phase plane near these equilibrium points.

[6+8]

2. Af L C circuit with nonlinear resistive element is shown in Fig. 2(a). The current entering the nonlinear resistive element is given by i = h(v) where the function h(v) is shown in Fig. 2(b).

M.E. (E.E.) 1st semester Final, Examination, November, 2013 Subject: State Variable Analysis EE 901

Full Marks: 70 Time: 3 Hrs

i) Answer any five questions taking at least one from Group A

ii) Questions are of equal value

- iii) Credit will be given to brief and to the point answers
- (a) (i) Write the state space model of the system considering v and \dot{v} are the state variable. (ii) Find the equilibrium point of the system and (iii) and find the nature of this equilibrium point.
- (b) Justify that this system must have a limit cycle.

[(2+2+4)+6]

3. Equation of a pendulum with friction can be represented by the following equation

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\left(\frac{g}{l}\right)\sin x_1 - \left(\frac{k}{m}\right)x_2$$

- (i) Find the equilibrium point and nature of the equilibrium point
- (ii) Show that the motion will be asymptotically stable for any perturbation using Lyapunuv Direct Method.

[(2+3)+9]

Group B

Answers which are not to the point and brief will be penalised

4. (a) For the system:

$$\dot{X}(t) = A(t)X(t); X(t_0) = X_0$$

define the state transition matrix $\Phi(t,t_0)$.

Also show that:

- i) $\Phi(t,t) = I$
- ii) $\Phi(t_0,t) = \Phi^{-1}(t,t_0),$
- (b) What is the connection between *poles* of a system and the *eigenvalues* of the A matrix?
- (c) The dynamics of a rocket is given by

$$\frac{\dot{Y}(s)}{U(s)} = \frac{1}{s^2}$$

And state variable feedback control is used where $x_1(t) = y(t)$; $x_2(t) = \dot{y}(t)$ and $u(t) = -x_2(t) - 0.5x_1(t)$.

Determine the *time response* of the closed loop system when $x_1(0) = 0$; $x_2(t) = 1$. Also find the *modes*.

M.E. (E.E.) 1st semester Final, Examination, November, 2013 Subject: State Variable Analysis EE 901

Full Marks: 70

Time: 3 Hrs

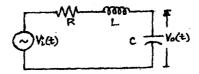
- i) Answer any five questions taking at least one from Group A
- ii) Questions are of equal value
- iii) Credit will be given to brief and to the point answers

[6+2+6]

5. (a) Define generalised eigen vectors of a matrix. What is their importance?

(b). Convert the following system to its diagonal form

$$G(s)=\frac{10}{s(s+1)}$$


(c) What is the solution to:

$$\dot{X}(t) = A(t)X(t) + B(t)U(t); X(t_0) = 0$$

Justify your answer.

[4+6+4]

6. (a) For the system below make two different choices of state variables. How are these two different state vectors related?

- (b) State the problem and the solution to the Linear Quadratic Regulator control problem.
- (c) Find two different set of basis in \mathbb{R}^2 .

[6+4+4]

- 7. (a) What is Linear State Variable Feedback Control? What can it achieve?
- (b) Express the system in 5 (b) in its Controllable Canonical Form.

Also design an LSVF controller to place poles at $-2 \pm i3$.

c) State whether the system in 5 (b) is reducible. Justify without doing any calculations.

[4+7+3]

- 8. (a) Classify uncertainty giving examples.
- (b) Write the equations of a full-order observer. State under what conditions does the estimation error decay to zero arbitrarily fast?
- (c) Draw the block diagram and find an equivalent discrete state space representation if the system in 5 (b) is preceded by a sampler with sampling time 1 seconds and a zero order hold.

[4+4+6]