M.E.(EE) 2nd Semester Examination,2012

Dynamics of Regulated Machines

(EE-1010)

Time: 3 hours Full Marks:70

Answer any Five questions

1. (a) Briefly describe the quality of a regulating system. [4]
(b) Derive the dynamic model of automatic regulation of the dc motor speed by variation of its armature. [10]

2. (a) What do you mean by automatic regulating system? Explain with suitable example. [4]

(b) State the advantages of state space model over transfer function model. [4]

(c) Develop the state feed back model of dc motor drives.

[6]

- 3. (a) What are the implications of right and left eigenvectors on system small perturbation state of any regulated machine? Explain analytically. [14]
- 4. Analytically establish the effect of the exciter on the dynamics of an alternator following a small disturbance. [14]
- 5. (a) Find the overall transfer function of an Amplidyne and an armature controlled d.c motor with field excitation current kept constant.
 - (b) Explain the working principle of the automatic regulating system for the d.c generator voltage and draw the network configuration of the voltage regulating system. [8+6]
- 6. (a) Explain with diagram in detail and develop the equations of the individual elements to draw the structural diagram of the speed regulating system of a d.c motor. The parameters of the individual links have the following values.

 $T_1 = 0.15 \text{ sec}$

 $T_2 = 0.1 \text{ sec}$

 $T_3 = 0.5 \text{ sec}$

 $T_4 = 0.01 \text{ sec}$

The overall gain of the system K_{av} =800.

Show that if a stabilizing device in the form of RC circuit is introduced into the system, the system will remain stable for an infinite increase of its gain with τ =0.01 and $K_3K_4K_5$ =100.

[7+7]

7. In the structural diagram of a closed loop automatic control system, the basic elements are represented by three series connected aperiodic links. The data of the individual links is as follows:

 $T_1 = 0.01$ $K_1 = 40$ $K_2 = 1$ $K_3 = 0.1$ $K_3 = 15$

Check the stability of the system.

A flexible negative feedback network having a transfer function of the type $\tau P/(1+\tau P)$ be connected in two different ways

- (a) When the stabilizing feedback network encloses the first two links.
- (b) When the stabilizing feedback network encloses only the first link. Check the stability of the system in both the cases with τ =0.5.

[7+7]