ME (C.E.) 1st SEMESTER FINAL EXAMINATION, 2012-13 Biological Processes in Environmental Engineering (CE 915)

Time Allowed: 3 hrs.

Full Marks: 70

Answer part A and Part B in a single answer-script.

Assume reasonable data if necessary.

Answers should be brief and to the point.

Answer FIVE (5) questions taking atleast TWO (2) from each part.

PART- A

- 1) a) How 'BOD' of wastewater is determined in the laboratory?
 - b) The BOD value of a wastewater was measured at 2 and 7 days and found to be 125 and 225 mg/l respectively. Determine the 5-d value using the first order rate model.
 - Discuss Fujimoto method for determining the BOD rate constant along with its mathematical forms.
 - c) Calculate the BOD reaction rate constant using the Fujimoto method for the following data.

Time (d)	0	1	2	3	4	5	6	7
BOD (mg/l) at 20 °C	0	65	109	138	158	178	190	200

3+3+5+3=14

- 2) a) State the assumptions in modeling the activated sludge process (ASP).
 - b) Derive the relationship among MLSS, SRT, HRT, growth yield, decay constant, influent and effluent substrate concentration for conventional (ASP).
 - b) What aeration tank volume is required to treat a wastewater flow of 1.5 MGD and BODu of 200 mg/l. An extended aeration process is to be used and the pertinent design criteria are as follows:

Biomass concentration = 4000 mg/l $Y_T = 0.5$ $K_d = 0.02 \text{ d}^{-1}$ K = 0.15 l/mg.d

c) What is sludge volume index (SVI)? What is the importance of SVI? How does it related with biomass concentration in returned sludge?

2+5+3+4=14

- 3) a) Discuss about the procedure for design of secondary sedimentation tank (SST).
 - b) A column analysis was run to determine the settling characteristics of an activated sludge suspension. The results of the analysis are shown below.

MLSS (mg/l)	1600	2400	3300	3900	4500	5300	6600	8200
Velocity (m/h)	3.0	1.7	1.1	0.70	0.40	0.28	0.11	0.08

The influent concentration of MLSS is 2000 mg/l and the flow rate is 12000 m³/d. Determine the size of the clarifier that will thicken the solids to 10000 mg/l.

c) Calculate the volume of two stage trickling filter with the following data using NRC equation

Average wastewater flow rate = 50 MLD

Influent BOD₅ = 240 mg/l

Effluent BOD₅ = 25 mg/l

BOD loading rate = 0.9 kg BOD₅/m³/d

Recirculation ratio R_1 and R_2 = 3 and 2 respectively

6+4+4=14

- 4) a) Derive an expression for fraction of soluble BOD remaining in a waste stabilization pond stating the assumptions. How this expression is used for design of pond?
 - b) A bio-tower composed of a modular plastic material is to be used for secondary treatment of municipal wastewater. The flow from the primary clarifier is 20 MLD with a BOD₅ of 180 mg/l. Two bio-towers are to be used, each with square surface and separated by a common wall. The medium is to have a depth

of 7.0 m and recirculation ratio to be 2.0. Determine the dimensions of the units required to produce an effluent concentration of 30 mg/l (BOD₅). Minimum temperature expected to be 20°C. Given n = 0.5 and $k_{20} = 0.1 \text{ per min.}$

In an anaerobic standard rate sludge digester, the raw sludge loading rate is 75.0 m³/d (having 1% consistency). The sludge is known to be about 70% organic and 30% inorganic in nature. Approximately 65% of the organic fraction is converted to liquid and gaseous end products after a period of 35 days. The digested sludge has a solid content of 5% and must be stored for a period of upto 90 days. Determine the volume requirement for a standard rate single stage digester.

PART – B

- List five requirements that must be complied with in order to obtain reliable BOD data. 5) a)
- List five requirements of a satisfactory dilution water for BOD work. b)
 - Why is a seed control needed in the BOD test? c)
 - What factors affect the rate of biochemical oxidation in the BOD test? d)
- 6) a) Define: (i) Metabolism, (ii) Catabolism, (iii) Anabolism and (iv) endogenous catabolism.
 - Define: (i) Autotrops. (ii) Heterotrops and (iii) Phototrophs. b)
 - What are adaptive enzymes? What role do they play in natural purification processes of bodies of C) water?
 - What are the mechanisms known to contribute oxygen to surface water? d)
 - 4+3+4+3= 14
- What factors affect the performance of mechanical aerators for oxygen transfer? 7) a) List the different types of aerators available to suite various requirements. b)
 - Distinguish among the various types of aerated lagoons treating domestic sewage. c)

 - What factors affect the pond ecosystem? What strategies are available to a designer for high removal of microorganism in waste stabilization ponds? 3+3+4+4= **14**
- Define θ_c , SRT and sludge age and explain their use in regulating the activated sludge process. 8) a)
 - What is the purpose of the F/M ratio? Show the relationship between F/M and θ_c . b)
 - c) Show schematically the pattern of carbon flow in anaerobic digester.
 - Show the typical energy yielding conversion reaction involved in the anaerobic digestor. d)

3+4+4+3= **14**

5+4+5=14

4+4+3+3= 14