M. E. (Soil Mech. & Foundation Engg.) 1st Semester Examination, December 2013 ADVANCED SOIL MECHANICS - I (CE-908)

Time: 3 hours

Assume any data, if required reasonably All questions carry equal marks

Answer question No. 7 and any Four from the rest

- 1. (a) Enumerate the sources of electrical charges on clay particles?
 - (b) Explain the followings:
 - (i) Exchangeable cations
 - (ii) Hydration of clays
 - (iii) Factors controlling the properties of clay materials

5+15 = 20

Full Marks: 100

- 2. (a) Derive the expression for Skempton's pore pressure parameters (A and B).
 - (b) How these parameters can be determined in the laboratory?
 - (c) The following results were obtained from undrained triaxial compression test on specimen of clayey silt:

Specimen	σ₃ (kPa)	σ ₁ (kPa)	U _i (kPa)	u _f (kPa)
No.		at failure	at failure	at failure
1	70	115	45	60
2	140	205	100	120
3	210	295	140	190

Determine the values of the Skempton's pore pressure parameters from the above test results and infer about the soil

8+4+8=20

- 3. (a) Explain with neat sketch the logarithmic spiral method for evaluating passive earth pressure on wall retains c-φ soil at its back.
 - (b) A gravity retaining wall retains 12 m uniform horizontal backfill, γ = 18 kN/m³ and ϕ = 30°. Assuming the wall interface to be vertical, determine the magnitude of active and passive earth pressures. Assume the angle of wall friction to be 20°. Determine the point of action also.

10+10=20

- 4. (a) Define stress path.
 - (b) Prove the followings:

(i)
$$\tan \alpha = \sin \phi$$

(ii)
$$c = \frac{a}{\cos \phi}$$
, the symbols are used for their usual meanings.

(c) Enumerate the corrections used in triaxial tests.

- 5. (a) Differentiate critically the classical earth pressure theories of Rankine and Coulomb.
 - (b) Describe Culmann's graphical method for finding earth pressure.
 - (c) A retaining wall of 10 m height retains cohesionless backfill. The void ratio and angle of shearing resistance of the backfill, in its loose state, are 0.7 and 30° respectively and they are 0.4 and 40° in dense state. For the soil grain G=2.7. Estimate and compare active and passive earth pressures in both cases.

8+6+6=20

- 6. (a) Explain DTA for identification of clay minerals
 - (b) Describe structures of any three clay minerals highlighting the role of clay minerals on the engineering properties of soils.

5+15 = 20

- 7. Write short notes on any **FOUR** from the following:
 - (a) Diffuse ion layer
 - (b) Mohr-Coulomb failure theory
 - (c) Special triaxial tests
 - (d) Active earth pressure on wall with inclined (upward) backfill, when $\beta = \phi$,
 - (e) Bell's equation from Mohr circle
 - (f) Stability of Retaining wall