Indian Institute of Engineering Science and Technology, Shibpur M.E. (Civil) Second Semester Examination, May, 2014 Sub: Water Resources Systems Planning and Management (CE-1014)

Time: Three hours Full Marks: 70

Answer any four from the following. Figures in the margin indicate full marks. Two marks are reserved for neatness.

- 1. Solve the following problem using simplex method
 - i) Maximize $z = 3x_1 + 4x_2$ Subject to $5x_1 + x_2 \ge 45$ $3x_1 + 5x_2 \le 72$ $2x_1 + x_2 \le 24$ $x_1, x_2 \ge 0$
- 2. Solve the following

i) Minimize
$$f(X) = (x_1 - 2)^2 + (x_2 - 2)^2$$
 ii) Minimize $f(X) = x_1^2 + x_2^2$
Subject to $x_1 + 2x_2 \le 3$ Subject to $x_1 + x_2 = 4$
 $8x_1 + 5x_2 \ge 10$ $2x_1 + x_2 \ge 5$

- 3. Four reservoirs are in a network. Reservoirs (1, 3) and (2, 4) are in series and reservoirs (3, 4) are in parallel. Draw the network. Describe the optimization problem in DP framework: i) for reservoirs (1, 3) only, ii) for reservoirs (3, 4) only, considering releases from the upstream reservoirs 1 and 2 as a part of their respective inflows, and iii) considering all the reservoirs simultaneously. (Note: Use a benefit function *Bt*, and maximize the cumulative benefits. Write the recursive equations, system dynamics and constraints only, for each of the cases above.)
- 4. Consider optimal monthly operation of a single reservoir having the following characteristics: $S_{\text{max}} = 50$, $S_{\text{min}} = 10$; $R_{\text{max}} = 30$, $R_{\text{min}} = 0$. Average monthly inflows to the reservoir are as follows: -

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Inflow (m³/s)	22	18	11	8	0	33	45	58	72	47	39	30

If the loss function is given by $P_t = (20 - R_t)^2$, derive the backward solution using discrete dynamic programming for December and November. Use R_t as control variable. (17)

(17)

- 5. Solve the reservoir operation problem of Q4. using S₁₊₁ as control variable.
- 6. Determine the optimal benefit and optimal allocation sequence x_i^* , j=1, ..., 3, for the following optimization problem using Dynamic Programming technique (Q = 3 units). (17)

Maximize $\sum B_i(x_i)$

 $\frac{0 \le x_j \le Q, \quad j=1,...,3, \text{ where } B_j(x_j) \text{ is as follows:}}{x_i \quad 0 \quad 1 \quad 2 \quad 3}$

Хj	0	1	2	3
\mathbf{B}_1	0	-0.25	3.5	6.5
B2	0	5.8	10.5	14.0
Вз	0	-6.5	-0.8	5.0

- 7. a) Describe the curse of dimensionality associated with Discrete Dynamic Programming.
 - b) In order to alleviate the curse of dimensionality, Discrete Dynamic Programming (DDDP) is used. Draw a neat sketch of the *corridor* and describe the method. Also discuss how it helps in alleviating the dimensionality problem. (4+13)
- 8. Rice and Bajra are grown on a land of 200 ha. The cost of growing Rice per hectare is Rs. 3 lakhs and that of Bajra is Rs. 2 lakhs. Gross benefits from these crops are Rs. 5 lakhs/ha and 3 lakhs/ha respectively. The available budget is Rs. 3 crores. Determine the optimal cropping pattern using Linear Programming. (17)