M.E. (Civil) 2nd Semester Examination, 2013 Foundation Engineering-II (CE-1010)

Full Marks: 100 Time: 3 hours

Answer any FOUR questions

1.(a) Distinguish between driven and bored cast-in-situ piles. Discuss their relative advantages and disadvantages.

(b) Under what conditions may negative skin friction develop? How would you compute the axial

load-carrying capacity of a pile subjected to negative skin friction?

(c) Determine the safe load that can be carried by a precast RCC pile of 300 mm diameter and an embedded length of 22 m from the following data:

weight of hammer = 20 kN height of free fall = 910 mm efficiency of hammer blows = 75% average penetration in the last 5 blows = 10 mm co-efficient of restitution = 0.55

Use modified Hiley's formula. Assume a factor of safety of 3.

(7+8+10=25)

2. (a) Discuss the advantages of precast piles over cast-in-situ piles. Comment on the suitability of precast piles in (i) clay (ii) sand deposits.

(b) A bored pile is to be installed at a site where the subsoil conditions are as follows:

Layer	Type of soil	Depth (m)		Average Properties	
No.		from	to		
1	Dessicated clay	0.0	0.8	$\gamma = 16.0 \text{ kN/m}^3, q_u = 90 \text{ kPa}$	
2	Medium clay	0.8	7.8	$\gamma = 15.8 \text{ kN/m}^3$, $\gamma_{sat} = 18.5 \text{ kN/m}^3$, $q_u = 65 \text{ kPa}$	
3	Soft clay with organic matters	7.8	11.5	$\gamma = 16.6 \text{ kN/m}^3$, $\gamma_{sat} = 19.2 \text{ kN/m}^3$, $q_u = 36 \text{ kPa}$	
4	Stiff clay	11.5	30.0	$\gamma = 19.5 \text{ kN/m}^3$, $\gamma_{sat} = 20.0 \text{ kN/m}^3$, $q_u = 121 \text{ kPa}$	

The Ground water table is at 1.8 m below GL. The length and diameter of the pile are 16 m and 400 mm respectively. The cut-off level of the pile is at 1.5 m below GL. Compute the safe bearing capacity of the pile. Assume reasonable values for any data not supplied. (10+15=25)

- 3. (a) A precast pile of length L has to be lifted horizontally with the help of a crane. Ropes are tied at two points located at equal distances of x from the right and left ends of the pile. Determine the optimum value of x/L that will result in the minimum bending moment in the pile when lifted.
- (b) A driven pile of length 20 m and diameter 450 mm has been installed in a cohesionless soil deposit having the following properties:

from GL to 5 m below it: $\gamma = 17.5 \text{ kN/m}^3$, $\phi = 0^\circ$, $q_u = 45 \text{ kPa}$, $\alpha = 0.9$

from 5 m to >20 m: $\gamma_{sat} = 18 \text{ kN/m}^3, \phi = 30^\circ, K_s = 0.65$

The water table is at 5 m below GL The values of Berezantsev's bearing capacity factor are given below:

1.00	Bearing capacity factor, N _q				
φ (°) -	D _f /B=5	D _f /B=20	D _f /B=70		
25	18.8	9.3	4.5		
30	27.4	21.1	16.9		

Determine the safe load carrying capacity of the pile with respect to a factor of safety of 3.

(8+17=25)

4. A raft footing is supported by a group of 96 piles, arranged in a formation of 8 x 12. The diameter and length of each pile are 350 mm and 22.5 m respectively and they are spaced 1.5 m apart. The depth of foundation of the raft is 1.2 m. The soil below is a clay deposit having the following average properties:

$$\gamma_{sat} = 19.9 \text{ kN/m}^3$$
, $q_u = 48 \text{ kPa}$, $\alpha = 0.85$

The raft is projected on each side by 0.6 m from the edges of the outermost piles. Assuming the ground water table to be at ground level, determine the safe load carrying capacity of the raft.

- 5. (a) Distinguish between the following:
 - (i) initial test and routine test.
 - (ii) working pile and test pile
 - (iii) maintained load test and cyclic load test.
- (b) Draw a typical load-settlement curve as obtained from a maintained load test. How would you determine the maximum load that should be applied on the pile during the test?
- (c) Describe the procedure to determine the shaft resistance and point-bearing resistance of a test pile from the results of a cyclic load test. (6+4+15=25)
- 6. A pile group supporting a raft footing of $12 \text{ m} \times 16 \text{ m}$ has to withstand an *udl* of 400 kN/m^2 , including the weight of the pile cap. The water table is at G.L. and depth of the pile cap is 1.5 m below that. The subsoil consists of a stratum of normally consolidated clay that extends to 25 m below the ground level and is underlain by a loose sand deposit, having a relative density of 0.45. The average values of the saturated density and the unconfined compressive strength of the soil are 19.5 kN/m^3 and 75 kPa respectively. The adhesion factor may be taken as 0.8. Design a suitable pile group to support the raft. Assume a factor of safety of 3.
- 7. In a piled raft foundation, the pile group consists of 121 piles arranged in a square formation. The diameter and length of each pile are 450 mm and 18 m respectively, while their spacing is 1.6 m c/c. The raft is founded at a depth of 1.5 m below GL and carries a gross vertical stress of 100 kN/m². The projection of raft on all sides beyond the outer edges of the piles is 0.8 m. The properties of the subsoil are as follows:

$$w = 32\%$$
, $G = 2.72$, $LL = 41\%$

Estimate the probable consolidation settlement of the pile group.