INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR

M.E. (Civil) 2nd Semester Examination, 2014

Sub: Advanced Soil Mechanics – II (CE – 1009)

Full Marks: 70

Times: 3 Hours

Answer any Four questions Assume reasonable data not supplied

- Q.1.(a) Write short notes on: (i) Method of construction of sand drain; (iii) Normally consolidated clay and Over consolidated clay; (iii) Creep and Relaxation, (iv) High strain dynamic testing of deep foundation.
 - (b) Explain the three basic rheological models with neat sketches.

$$\[3 \times 4 + 5\frac{1}{2} = 17\frac{1}{2}\]$$

Q.2. Enumerate the assumptions for one dimensional consolidation and then deduce the basic differential equation for one dimensional consolidation. Also write equations for 3 – D consolidations.

 $\left[17\frac{1}{2}\right]$

- Q.3 (a) Explain with neat sketches the several possible types of variation for u_i (pore water pressure) with depth of clay layer undergo consolidation and also write down the relationship for u_i and boundary conditions.
 - (b) The results of oedometer test on normally consolidated clay are given below (Two way drainage):

σ, lb/ft²	e
1000	1.01
2000	0.90

The time for 50 % consolidation for the load increment from 1000 to 2000 lb/ft² was 12 min, and the average thickness of sample was 0.95 in. Determine the coefficient of permeability and the compression index.

(c) Undisturbed samples were collected from a 3 m thick clay stratum, which lies between two sand strata. A laboratory consolidation test performed on a 2.5 cm thick sample of the clay. During the test, water was allowed to drain out only through the top of the sample. The time required for 50 % consolidation was found to be 35 minutes. Determine the time required for 60 % and 90 % consolidation in the field.

 $\left[10 + 2\frac{1}{2} + 5 = 17\frac{1}{2}\right]$

- Q.4 (a) Explain with neat sketches the block vibration test. How do you determine the coefficient of elastic uniform compression and damping coefficient of the test?
 - (b) The following data refers to a vertical resonance test carried out on a $1.5 \times 0.75 \times 0.70$ m high concrete block for estimating dynamic elastic constants for the design of a forge hammer foundation:

f(cps)	20	25	30	35	40	24	26	45
Amp. (mm)	0.018	0.030	0.068	0.120	0.138	0.22	0.18	0.130

The test was carried out at a depth of 6 m below the ground surface. The soil ta the site was clay of low to intermediate compressibility. The weight of oscillator motor is 2.1 kN. Draw the amplitude-frequency plot and determine the value of C_u , C_τ , C_ϕ for 10 m² base area. If the weight of the block and oscillator assembly is 22 kN and maximum dynamic force of oscillator (eccentricity $\phi = 140^\circ$) at 50 Hz frequency is 5.0 kN. Determine the damping factor.

 $10 + 7\frac{1}{2} = 17\frac{1}{2}$

- Q.5(a). The water table in a lake has been lowered by 20 m. Will this cause consolidation settlement of the lake-bed sediments? Explain.
 - (b) The dial readings recorded during the consolidation test at a certain load increment are given below.

Time (min)	0	0.10	0.25	0.50	1	2	4	8	15	30	60	120	240	1200	1620
Dial Reading	240	318	340	360	385	415	464	530	622	738	842	930	975	1070	1090
$(\text{cm} \times 10^{-4})$															

Determine C_{v} by the all available methods and compare the values of C_{v} .

$$\left[1\frac{1}{2} + 16 = 17\frac{1}{2}\right]$$

Q.6. Undrained triaxial test on bluish clay was conducted. Sample size was 38 mm diameter and 76 mm height. L.C. of strain dial: 0.025 mm / div. and L.C. of proving ring dial constant: 2.83 N /div.

Strain dial	σ ₃ =70 kPa	σ ₃ =140 kPa	σ ₃ =210 kPa			
reading	Proving ring dial reading	Proving ring dial reading	Proving ring dial reading			
0	0	0	0			
10	5.0	6	7			
20	9.2	11.5	15			
40	11.5	15.0	20.8			
60	12.5	17.4	23.7			
80	13.5	18.5	25.5			
100	14.2	19.7	26.5			
140	15.6	21.2	28.2			
180	17.4	22.4	30.4			
200	18.5	23.1	31.6			
250	16.0	25.4	32.4			
300	-	27.4	33.9			
350	-	28.0	35.2			
400	-	27.0	36.0			
450	-	-	36.5			
500	-	-	38.5			
550	-	-	38.0			

- (i) Plot the stress strain curve in normal condition and also transform stress strain curve.
- (ii) Determine the initial tangent modulus (Ei) and ($\sigma_1.\sigma_3$)_{ult} from both the plot.
- (iii) Determine the secant modulus at 2 % and 5 % strain.
- (iv) Determine the tangent modulus at S = 0.8.

 $\left[17\frac{1}{2}\right]$

END