INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR M.E. 2nd SEMESTER (CE) EXAMINATIONS, 2014 Optimization of Structures (CE –1003)

Full Marks: 70 Time: 3 hrs

Answer any <u>five</u> questions.

Symbols have their usual meanings.

Assume reasonable values where necessary.

- Q.1. Answer any four of the following:
 - (i) Differentiate between a Free point and a Bound point in the design space. Show the different types of Free and Bound points in a hypothetical 2-d design space.

(ii) Explain with examples:

Behaviour Constraints and Side Constraints

- (iii) Write about five applications of linear programming.
- (iv) What are the Kuhn-Tucker Conditions?
- (v) What are the characteristics of a linear programming problem?
- (vi) State and prove the sufficient condition for the extreme point of an unconstrained multivariable optimization problem.

 $(3.5 \times 4 = 14)$

- Q.2. (a) Describe the Fibonacci Method for single variable unconstrained optimization. Explain the special consideration for locating the last numerical experiment.
 - (b) Write the Lagrange function for a multivariable optimization problem with inequality constraints. Show that for a constrained minimum point, the Lagrange multipliers have to be positive.

(8+6=14)

Q.3. a) Solve the following LP problem.

Maximize
$$F = x_1 - 2x_2$$

subject to
 $-2x_1 + x_2 \le 0$
 $-2x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$

- b) Answer True or False:
- (i) The feasible space of LP problems can be nonconvex.
- (ii) The unique optimum solution of an LP problem always lies at a vertex.
- (iii) The slack and surplus variables can be unrestricted in sign.
- (iv) The infeasibility form in the Simplex Method can be negative.
- c) Explain the basis for identifying the presence of multiple optima in the Simplex Method? (8+2+4=20)

Q.5. a) Perform two sets of exploratory and pattern moves of the Hooke-Jeeves Pattern Search Method for the following problem.

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$

starting from $X_1 = \begin{cases} 0 \\ 0 \end{cases}$. Take $\Delta = \begin{cases} 0.6 \\ 0.6 \end{cases}$.

b) Write an algorithm for Cauchy's Method of Steepest Descent.

$$(8+6=14)$$

Q.5. Find the optimum solution for the following LP problem.

Maximize
$$F = y_1 + 2y_2$$

subject to $3y_1 + 2y_2 \le 12$
 $2y_1 + 3y_2 \ge 6$
 $y_1 \ge 0, y_2$ is unrestricted in sign.

(14)

(10+4=14)

Q.6. a) Determine whether the following vectors serve as conjugate directions for minimizing the function $f = 2x_1^2 + 16x_2^2 - 2x_1x_2 - x_1 - 6x_2 - 5$

(i)
$$S_1 = \begin{cases} 15 \\ -1 \end{cases}$$
, $S_2 = \begin{cases} 1 \\ 1 \end{cases}$ (ii) $S_1 = \begin{cases} -1 \\ 15 \end{cases}$, $S_2 = \begin{cases} 1 \\ 1 \end{cases}$

b) Describe the Parallel Subspace Property and the Extended Parallel Subspace Property.

(8+6 = 14)

Q.7. Minimize
$$f = 2(x_2 - x_1^2)^2 + (1 - x_1)^2$$

If a base simplex is defined by the vertices
$$X_1 = \begin{cases} 0 \\ 0 \end{cases}$$
, $X_2 = \begin{cases} 1 \\ 0 \end{cases}$, $X_3 = \begin{cases} 0 \\ 1 \end{cases}$,

Find a sequence of three improved points (different from the base simplex) using reflection, expansion and/or contraction.

- Q.8. a) What are Penalty Function methods also known as and why?
 - b) Explain clearly the difference between Exterior and Interior Penalty Function Methods.
 - c) Give an algorithm for the Interior Penalty Function method. What are the considerations for the choice of the initial value of the penalty parameter R?

 (4+4+6 = 14)