BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR M.E. 1st SEMESTER (EM) FINAL EXAMINATION, 2013

THEORY OF VIBRATIONS – I (AM-927)

Full Marks: 70 Time: 3 hrs

Answer any FIVE questions.

- 1. a) Determine the natural frequency of oscillation of the system shown in Fig. Q1a. J is the moment of inertia of the integral pulley about its axis of rotation.
 - b) Derive an expression for the natural frequency of the system shown in fig. Q1b. The mass of each pulley is small compared with mass m and therefore, can be ignored. Furthermore, the cord holding the mass is inextensible and has negligible mass. [7+7]
- 2. a) The system shown in Fig. Q2a has two rigid uniform beams of lengths l and mass per unit length m hinged at the middle and resting on rollers at the test stand. The hinge is restrained from rotation by a torsional spring K_t and supports a mass M held up by another spring k to a position where the bars are horizontal. Determine the equation of motion.
 - b) Show that the normal modes of a system are orthogonal with respect to the mass matrix. [8+6]
- 3. Derive the response for a sinusoidal pulse applied to an undamped spring-mass system as shown in Fig. Q3. [14]
- 4. A torsional system shown in Fig. Q4 is composed of a shaft of stiffness K_1 , a hub of radius r and moment of inertia J_1 , four leaf springs of stiffness k_2 , and an outer wheel of radius R and moment of inertia J_2 . Set up the differential equations for torsional oscillation, assuming one end of the shaft to be fixed. Derive the frequency equation in terms of J_1 , J_2 , ω_{11} and ω_{22} which are uncoupled frequencies given by the expressions $\omega_{11} = K_1/J_1$ and $\omega_{22} = (4k_2R^2)/J_2$. [14]
- 5. a) State the reciprocity theorem for the flexibility influence coefficients and prove it.
 - b) An airfoil section to be tested in a wind tunnel is supported by a linear spring k_L and a torsional spring k_T as shown in Fig. Q5b. If the center of gravity of the section is a distance e ahead of the point of support, determine the differential equations of motion of the system. [7+7]

6. Assuming a static deflection curve

$$y(x) = y_{max} \left[3\left(\frac{x}{l}\right) - 4\left(\frac{x}{l}\right)^3 \right], \quad 0 \le x \le \frac{1}{2}$$

determine the lowest natural frequency of a simply supported beam of constant EI and a mass distribution of $m(x) = m_0 \frac{x}{l} \left(1 - \frac{x}{l}\right)$ by the Raleigh method. [14]

7. Derive the differential equation of motion for the longitudinal vibration of a uniform bar with modulus of elasticity E, material density ρ and length l. Find out the frequency equation for a free-free rod. [8+6]

Fig. Q4

Fig. Q5b