M.E. (Electrical) 1st Semester Examination, 2011

THEORY OF DISCRETE AND DIGITAL SYSTEMS (EE-902)

Time : <u>3 Hours</u>

Answer any FIVE questions
The questions are of equal value

Full Marks: 70

- 1. a) With the help of data reconstruction by polynomial extrapolation, show that a sampler cannot be represented by a transfer function.
 - b) Find the z-transform of the following single sided data sequence.

$$f(k) = \left\lceil \frac{1}{k!} \right\rceil , k \ge 0$$

- c) How the signal is reconstructed by using a zero-order hold from a discrete time data? Explain with the help of frequency domain consideration. [4 + 4 + 6]
- 2. a) Find the pulse transfer function of a discrete-time system given by $y(k) = \sum_{h=0}^{k} r(h)$ for k = 0, 1, 2,... and y(k) = 0 for k < 0. Use recursive method.
 - b) Solve the difference equation x(k+2)-2x(k+1)+3x(k)=u(k+1), where u(k) is a unit step sequence for k=1,2,3... and x(0)=x(1)=0
 - c) Find the z-transform of $G(s) = \frac{1 e^{-s}}{s} \cdot \frac{1}{(s+3)}$ as a product of two Laplace transformable functions.
- 3. a) A digital PID controller is to replace an old analog system. Show the block diagram of the new retro-fitted system. If the old analog PID controller has the settings of Proportional gain=10, reset time =50s and the Rate time =0.5s. What will be the values of the PID parameters of the digital controller for the same performance? Given sampling time = 0.5s.
 - b) Draw the z-plane mapping for the shaded region on s-plane shown in Figure 1.

c) Use Jury's stability criterion to find the ranges of K for stability of the system given by characteristic equation: $F(z) = (z - e^{-2T})[4(z-1) + 2KT] - K(z-1)(1 - e^{-2T}) = 0$, where sampling time is 0.4s.

[4+5+5]

- 4. a) $f(t) = \left| \frac{e^{-2t}, t \ge 0}{0, t < 0} \right|$, Find F(z) using convolution integral in RH-side of s-plane.
 - b) Show that $F^*(s)$ is periodic with a period of $\frac{2\pi}{\omega_*}$
 - c) Find the steady state error of the system shown in Figure 2 for an input of r(t) = 1 + t

- 5. a) What is Bilinear Transform? Why Frequency pre-warping is necessary for the design of discrete time controllers using Bilinear Transformation? Write down the steps of such design.
 - b) Using signal flow graph find the output C(z) of the multi-rate sampling system shown in Fig. 3.

- 6. a) What is Digital Filter? Classify different configurations of Digital Filters. What is DSP? Compare Digital Filter and DSP.
 - b) State Transposition Theorem. With the help of an example apply Transposition Theorem on a self-transposed configuration. [7 + 7]
- 7. a) "Canonic form of configuration of Digital Filter requires minimum number of delay modules"- Discuss with an example.
 - c) Why does Indirect Approach for Digital Filter result superior regarding Quantization Error or Effect of Finite Word-length. [7+7]
- 8. Write short notes on any two

[7×2]

- a) Web Digital Filter
- b) Multiplier Extraction Technique in Digital Filter
- c) Comparison between IIR and FIR filters
- d) Lattice Form of realization of Digital Filter
- e) Effect of Finite Word-length in execution of Digital signal processing

