B.E. (CE) Part-III 6th Semester Examination, 2007

Environmental Engineering-I (CE-606)

Time: 3 hours Full Marks: 100

Use separate answerscript for each half.

Answer SIX questions, taking THREE from each half.

Two marks in First half & Half Mark in Second half are reserved for neatness.

Assume any data, if required, reasonably.

FIRST HALF

- 1. a) What is p_{rms} for sound? What is sound pressure level? What is the sound pressure level generated by a sound source with intensity of 9.9×10^{-9} W/m²? If five similar sources generate sound generate simultaneous sound with same intensity of 9.9×10^{-9} W/m², find the resultant sound level.
 - b) What are dbA and dbC for noise level measurement?
 - c) What is L_{eq} in connection with noise level measurement? The following noise level measurements were taken in a locality.

Time (h)	Sound level (dbA)	
0000 - 0600	42	
0600 - 0800	55	
0800 - 1000	65	
1000 - 2000	70	
2000 – 2200	68	
2200 - 0000	57	

Calculate the Leq.

(8+3+5)

- 2. a) In which layer of the earth's atmosphere is the ozone layer found? How the ozone layer acts as a shield against solar UV radiation? Why the chlorofluorocarbons are considered to be damaging for the ozone layer?
- b) How acid rain is caused? Why acid rain is a cause for concern?
 - c) Name at least four gases that are responsible for global warming. (6+6+4)
- 3. a) If the biomass of each trophic level is put together, it assumes the form of a pyramid; i.e. biomass decreases as we go up the food chain. Explain the reason.

- b) In any ecosystem, the food chain is normally limited within few trophic levels. Why there cannot be too many trophic levels in any ecosystem?
- c) Write a scenario of what would happen to an ecosystem or to the human system in the event of all decomposers and detritus feeders are eliminated.

 (6+6+4)
- 4. a) A large number of fish are suddenly found floating dead on a lake. You are called to investigate the problem. You find an abundance of phytoplankton and no evidence of toxic dumping. Suggest a reason for the fish kill.
 - b) Why is it important to preserve biodiversity?
 - Explain bioaccumulation and biomagnification as related to chemical pesticides.
 (5+5+6)
- 5. a) What is adiabatic lapse rate? If the environmental (ambient) lapse rate is 6°C per km, how is the stability of the environment characterised? What is inversion in the context of environmental lapse rate?
 - b) Scrubbers can be used for removal of SO₂. Name a suitable chemical that can be used for this purpose. Also write pertinent chemical equation.
 - c) Show a schematic sketch of a cyclone separator and briefly explain its operation. (6+4+6)

SECOND HALF

- 6. a) What are the quality parameters for drinking water? What is their significance as drinking water quality standards?
 - b) Tests for common ions are run on a sample of water and the results are shown below. Draw the bar diagram and calculate total hardness, calcium hardness, magnesium hardness, temporary hardness, permanent hardness, carbonate hardness, non-carbonate hardness, sulfate hardness and chloride hardness. Constituents: $Ca^{2+}=60$ mg/L; $HCO_3^-=180$ mg/L; $Mg^{2+}=24$ mg/L; $SO_4^{2-}=63$ mg/L; $Na^+=65$ mg/L; $CI^-=91.5$ mg/L. And concentration of CO_2 (g) = 20 mg/L.
- 7. a) What are the different types of solids that may present in water? How they are related to turbidity.
 - b) What are the alpha and beta particles? What are their units of measurements? What are their impacts on environment?
 - c) If 5 gram of acetic acid (CH₃COOH) is added to enough distilled water to make 1 liter of solution, what will be the acetate ion concentration and pH of the solution? $K_A = 1.75 \times 10^{-5}$. [4½+6+6]

- 8. a) Write short notes on Arsenic problem in India and Bangladesh.
 - b) A sample of water from the overflow of the recarbonation basin that follows a precipitation/softening process has a pH of 9.0; 200 mL of the water require 3.1 mL of 0.02 N H₂SO₄ to titrate it to the phenolphthalein endpoint and additional 22.9 mL of 0.02 N H₂SO₄ to titrate it further to the orange endpoint. Assuming the sample contains no calcite particles, what are phenolphthalein alkalinity and the total alkalinity in mg/L as CaCO₃? At what concentration of different 'alkalinity causing species' are present in the sample?
 - c) What is Kjeldahl nitrogen? Why nitrite and nitrate tests are important in a waste water treatment plant? [5+6½+5]
- 9. a) What are basic differences between BOD and COD? Explain with diagram the 1st stage and 2nd stage BOD. Why usually 5 day BOD at 20°C is considered as standard?
 - b) Describe the different zones of DO sag curve.
 - The BOD₅ at 27°C of a waste has been measured as 600 mg/l. If k = 0.23/day at 20°C, what is the ultimate BOD of the waste. What proportion of the ultimate BOD would remain unoxidised after 17 days? Given Temperature of waste is 30°C. [6½+4+6]
- 10. a) What are the management procedure of Bio-medical waste and Industrial solid waste?
 - b) Draw a flow-chart of the modern management system (treatment and disposal only) of Municipal Solid Waste.
 - c) Estimate the moisture content, density and energy content (as discarded and dry) of a solid waste sample that has following components.

Component % by	% by mass	Moisture content	Typical Density	Energy content
		(%)	(kg/m^3)	(kJ/Kg)
Food waste	50	70	290	4650
Paper	30	6	85	16750
Plastics	8	3	65	32600
Yard waste	12	60	105	6500

 $[6+5\frac{1}{2}+5]$

- 8. a) Write short notes on Arsenic problem in India and Bangladesh.
 - b) A sample of water from the overflow of the recarbonation basin that follows a precipitation/softening process has a pH of 9.0; 200 mL of the water require 3.1 mL of 0.02 N H₂SO₄ to titrate it to the phenolphthalein endpoint and additional 22.9 mL of 0.02 N H₂SO₄ to titrate it further to the orange endpoint. Assuming the sample contains no calcite particles, what are phenolphthalein alkalinity and the total alkalinity in mg/L as CaCO₃? At what concentration of different 'alkalinity causing species' are present in the sample?
 - c) What is Kjeldahl nitrogen? Why nitrite and nitrate tests are important in a waste water treatment plant? [5+6½+5]
- 9. a) What are basic differences between BOD and COD? Explain with diagram the 1st stage and 2nd stage BOD. Why usually 5 day BOD at 20°C is considered as standard?
 - b) Describe the different zones of DO sag curve.
 - The BOD₅ at 27°C of a waste has been measured as 600 mg/l. If k = 0.23/day at 20°C, what is the ultimate BOD of the waste. What proportion of the ultimate BOD would remain unoxidised after 17 days? Given Temperature of waste is 30°C. [6½+4+6]
- 10. a) What are the management procedure of Bio-medical waste and Industrial solid waste?
 - b) Draw a flow-chart of the modern management system (treatment and disposal only) of Municipal Solid Waste.
 - Estimate the moisture content, density and energy content (as discarded and dry) of a solid waste sample that has following components.

Component % by	% by mass	by mass Moisture content (%)	Typical Density	Energy content
			(kg/m^3)	(kJ/Kg)
Food waste	50	70	290	4650
Paper	30	6	85	16750
Plastics	8	3	65	32600
Yard waste	12	60	105	6500

 $[6+5\frac{1}{2}+5]$