B.E. (Civil) Part III 6th Semester Final Examination, 2012-13 Environmental Engineering – II (CE 605)

Time: 3 hours Full Marks: 70

Use separate answer script for each half.

<u>TWO (2)</u> marks are reserved for neatness in each half

Answer **ANY THREE (3)** questions from each half.

FIRST HALF

- 1. (a) Depict the relative efficiencies of the following control devices for removal of particulate matters ESP, venturi scrubber, bag filter, spray tower.
 - (b) Explain the working principle of an ESP.
 - (c) Name a device which can be useful to control emissions of particulate matter as well as any of the gaseous pollutant. Briefly describe the principle of operation.
 - (d) According to the Bharat Stage IV norms for automobile exhaust, which pollutants are monitored in the petrol and diesel-driven automobiles?
 - (e) How the catalytic convertors are helpful in reducing the automotive pollution? What is a three-way catalytic convertor?

(2+2+2+3+2=11)

- 2. (a) Mention two categories of stationary sources of air pollution with examples. What are primary and secondary air pollutants?
 - (b) Ozone is an air pollutant do you agree?
 - (c) As per the CPCB norms, the ambient air quality standard for SO_2 is 50 $\mu g/m^3$ (annual average). How the 'annual average' concentration is estimated? Express the concentration in ppm
 - (d) What are the precursors (which helps formation) of photochemical smog? Name some common components of photochemical smog.
 - (e) Which is the air pollutant(s), the emission of which is regulated in cement industry?

(3+2+3+2+1=11)

3. (a) Suppose the following atmospheric altitude versus temperature data have been collected.

Altitude (m)	Temperature (°C)
0	20
100	18
200	16
300	15
400	16
500	17
600	18

What would be the mixing depth?

How high would you expect a plume to rise if it is emitted at 21°C from a 100 m stack if it rises at dry adiabatic lapse rate? Would you expect the plume to be looping, coning, fanning, or fumigating?

(b) The rate of emission of SO_2 from the stack of a power plant is 126.1 g/s. The effective height of the stack is 46 m. Calculate the SO_2 concentration in ppm at a parking lot located 900 m downwind from the stack on a sunny day when the wind velocity is 4m/s. Use class 'C' stability.

(6+5=11)

- 4. (a) What are the principal factors that cause plume rise for a stack?
 - (b) Why higher stacks may help reduce the pollution problem?
 - (c) What is adiabatic lapse rate? What is unstable atmosphere with respect to vertical dispersion of air pollutants? If the temperature of the atmosphere is decreasing at a rate of 5.5°C per kilometer, how the stability of the atmosphere is characterized?
 - (d) What is temperature inversion in the atmosphere? How is it caused?

(2+2+4+3=11)

- 5. (a) How SO_x and NO_x may generate acid by atmospheric reactions to cause acid rain? Mention two reaction pathways for atmospheric generation of each pollutant. What are the harmful effects of acid rain?
 - (b) The average ozone concentration is 300 Dobson units. What is 'Dobson unit'? As O_2 can also absorb UV radiation, why presence of O_3 in the stratosphere is considered so important? Show the catalytic reaction how CFC can destroy ozone molecules.
 - (c) Explain how the presence of certain gases helps warming of the Earth's lower atmosphere. What is atmospheric window?

(4+4+3=11)

SECOND HALF

- 6. (a) What factors are to be considered during laying out of routes for collection of municipal solid waste?
 - (b) State the different steps that are processed during the layout of collection routes.
 - (c) Explain the term 'break even time'.

(4+4+3=11)

- 7. (a) What important factors are to be considered in the design of transfer stations? Classify the transfer stations based on the method of loading the transport vehicles.
 - (b) What should be the probable location criteria for transfer station?
 - (c) What could be the principle means to transport solid waste?

(5+4+2=11)

- 8. (a) Why are the processing techniques used in solid waste management system? What factors are to be considered in evaluating on site processing equipments?
 - (b) What are the important aspects in implementation of sanitary landfills?
 - (c) State the factors that must be considered in evaluating potential landfill sites.

(5+2+4=11)

- 9. (a) Classify the various landfilling methods and state their suitability.
 - (b) What are the important events that occur when solid wastes are placed in a sanitary landfill?
 - (c) List the important design considerations in the design and operation of landfills.

(3+4+4=11)

- 10. (a) What can be the recovery of conversion products through biological processes from solid wastes?
 - (b) What conversion products can be recovered through the thermal processes of solid wastes?
 - (c) Distinguish between 'gasification' and 'pyrolysis.

(4+4+3=11)

