B.E 4th Semester Examination, June, 2007 Sub: Surveying - II(CE-402)

Time: Three hours

Figures in the margin indicate full marks (One mark is reserved for neatness in each half)

FullMarks: 70

FIRST HALF

Answer any four questions

1. (2+6.5)

a) What is 'spherical excess' for a spherical triangle?

b) What is the geodetic area enclosed within the spherical triangle between Kolkata (88°20 E, 22°32' N), Mumbai (72°50' E, 18°58' N) and Delhi (77°13' E, 28°38' N)? What is the 'convergence' between Kolkata and Delhi and shortest distance between them? What will be the direction of flight from Kolkata to Delhi?

2. (2+6.5)

a) 'The bearing of a particular line (AB) is unique; while azimuth is not unique' – Justify.

b) In order to ascertain the directions of the underground flow of water, borings were taken at points A, B, and C; B being true north of A and C lying eastward of A and B. The distance from A to B was 914.6 m, B to C 1219.5 m and A to C 1524.4 m. The observed underground water levels above the datum were at A 39.63, at B 51.83 and at C 3.05 m. What is the direction of the underground flow of water?

3. (3+5.5)

- a) Show with a sketch the right ascension, hour angle and azimuth of a star.
- b) Draw a neat diagram of the celestial sphere to show the following:
- i) Zenith, nadir and celestial horizon
- ii) Celestial poles and equator
- iii) First point of Aries and first point of Libra
- iv) Ecliptic
- v) Position of the Sun
- vi) Position of earth
- vii) Position of a star, RA = 3 h and declination = 55° N Given that :
- (i) Date of observation: July 3, 1979
- (ii) Place of observation: 22.5° N and 88.5° E
- (iii) Time of observation: LAT = 10.30 h
- (iv) $RA ext{ of } Sun = 6 ext{ h } 49 ext{ m}$

4. (3+2.5+3)

- a) On a ship, the following measurements are made of the stars Alpha Centauri (Azimuth: 183.0°; Zenith distance: 74.0°) and Vega (Azimuth: 51.0°; Zenith Distance: 54.5°). The declinations of the Alpha Centauri and Vega are -60.5° and 38.5°. Find the latitude.
- b) What are parallax and semidiameter corrections for astronomical observations?
- c) An observation gave the meridian altitude of the lower limb of the Sun as 28°57'52" looking towards the south point of the horizon. Sun's declination is 9°17'30" S. Apply the following corrections and compute the latitude of the station:

Semidiameter = 16'05" Parallax = 8" Refraction = 1'47"

(2.5 + 2 + 4)

a) "Overlap and sidelap are necessary for proper aerial photographic coverage" - Discuss this statement.

b) What is parallax in stereophotogrammetry?

c) An aircraft flying at an altitude of 4600 m above MSL photographs 5 strips of 20 photographs each of a terrain having $h_{avg} = 300$ m above MSL. If f = 205.53 mm, find the scale of the photograph and the area covered by each photograph of size 23 x 23 cm. Assuming 60% forward and 20% sidelap, find the total area covered by the photography.

(3+3+2.5)

a) Briefly indicate, with aid of sketches, the displacements that make an aerial photograph of the terrain different from map of such terrain.

b) Points A and B are at elevations 273 m and 328 m above datum, respectively. The photographic coordinates of their images on a vertical photograph are:

 $x_a = -68.27 \text{ mm}; \ x_b = -87.44 \text{ mm}$

 $y_a = -32.37 \text{ mm}$; $y_b = 26.81 \text{ mm}$

What is the horizontal length of the line AB if the photo was taken from 3200 m above datum with a 21 cm focal length camera?

c) What is the height of a tower above terrain which appears on a truly vertical photograph with the following data:

Flying height above base of tower = 3200 m

Distance between principal point and the image of the tower base = 75.11 mm

Distance between principal point and the image of the top of the tower = 82.54 m

SECOND HALF

Answer Question No. 7 and any two from the rest

7. Write short notes on the following (any four):

 $(4 \times 3 = 12)$

- a) True value and most probable value of a quantity
- b) Geostationary satellite and Sun-synchronous satellite
- c) Independent quantity and Conditioned quantity
- d) Radiometric Resolution
- e) Spatial resolution
- f) Passive sensing and active sensing
- g) Consecutive coordinates and Independent coordinates

8. (3+3+5)

- a) Calculate the most probable value and the probable error of the volume of a box whose sides are 10 ± 0.02 m, 12 ± 0.01 m and 10 ± 0.03 m.
- b) Find the most probable value of the angle A from the following observation equations: $A = 40^{\circ} 20^{\circ} 12^{\circ}$ weight 1, $2A = 80^{\circ} 40^{\circ} 20^{\circ}$ weight 2 and $6A = 242^{\circ} 1^{\circ} 6^{\circ}$ weight 3
- c) State laws of weights with example.

9. (4+7)

a) Derive the expression for the horizontal distance D of a vertically held staff for a tacheometer if the line of sight of the telescope is inclined upwards.

b) Following observations were made by a tacheometer fitted with a anallatic lens having multiplying constant =100.00

Instrument station	Staff Station	Vertical angle	Staff hair reading (m)			Remarks
			Lower	Middle	Upper	
A	Bench Mark	-2°24'	1.20	1.83	2.46	Reduced level of the
Α .	В	+4°36'	1.35	1.82	2.29	bench mark
В	C	+6°12'	0.72	1.88	2.04	= 37.725 m

If the height of the instrument at A and B are 1.44m and 1.41m respectively and the staff held vertically, compute the elevations of A, B and C.

10. (5+6)

a) 'Following observations are made for a closed traverse.

Line	Latitude (m)	Departure (m)
AB	-300	+450
BC	+640	+110
CD	+100	-380
DE	-440	-180

Compute the area of the traverse by (a) co-ordinate method (b) the departure and total latitude method.

b) A straight tunnel is to be run between two points A and B, whose independent coordinates are:

Point	Independent coordinates		
	N	E	
A	0	0	
В	3014	256	
С	1764	1398	

It is desired to sink a shaft at D, the mid-point of AB, but it is impossible to measure along AB directly. So D is to be fixed from C, another point whose coordinates are known. Calculate the (i) Independent coordinates of D (ii) Length and bearing of CD (iii) angle ACD, given the W.C.B. of AC is 38⁰24'.

11. ' (11)
The length and bearings of a closed traverse ABCD, as observed with a transit theodolite are given below

The length and bearings of a closed traverse ABCD, as observed with a transit theodolite are given below. Prepare a Gale's traverse table.

Line	Length	Included angle	W.C.B.
AB	255 m	$\angle A = 93^{\circ}18'16''$	140 ⁰ 42'
BC	656 m	$\angle B = 74^{\circ}16'25"$	The File dec
CD	120 m	$\angle C = 123^{0}42'00"$	
DA	668 m	$\angle D = 68^{\circ}41'16''$	