BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

First Semester B.Arch. Final Examination 2012 Subject: Engineering Mechanics (AM 101A)

Full Market 70

system is in equilibrium.

4

Fig.5.

3(a) State Coulomb's laws of friction.

applied to the upper block that will induce sliding.

Branch: Architecture.

(7)

(2)

(8)

(10)

(i) Take $g = 9.807 \text{ m/s}^2$. (ii) Assume any other data not given in the question.	
First Half	
Answer Question No.1 and any THREE from the rest.	
1. A 400 N force is applied to a welded slender member having negligible self weigh	nt
(Fig.1). The member is fixed to the floor at O. Fill in	n
the blanks: (2+2+1)
(a) If $\theta = 20^{\circ}$, The magnitudes of moments developed at A and O are respectively	У
and	
(b) If the moments at A and O are identical, the values of $ heta$ should be or	<u>.</u> .
(c) The moment at O vanishes when the value of θ is, if $0 \le \theta \le 180^{\circ}$.	
2(a) The 450 kg uniform I-beam supports a load, having a total mass of 220 kg, shown	n
in Fig.2. Determine the reactions at the supports. (3))

(b) A uniform slender rod having mass m_1 is welded centrally (Fig.3) to the horizontal

edge of a uniform semi-cylindrical shell having mass m_2 . The composite body is

resting on the horizontal floor. Express θ in terms of m_1 and m_2 for which the

(b) Two blocks having weights W_1 and W_2 are connected by a string and rest on

horizontal floors as shown in Fig.4. If the angle of static friction for each block with

the floor is ψ , determine the magnitude and direction of the minimum force P

Determine the axial forces induced in the members of the loaded truss shown in

- A force *P* is applied at the mid-point *D* of the member *BC* (Fig.6). Determine the value of the couple *M* in terms of *P* and *R* such that: (i) the horizontal force transmitted by the pin *B* is zero. (ii) the vertical force transmitted by the pin *B* is zero. Both the members are of negligible self weight. (5+5)
- Determine the centroidal polar moment of inertia of the area bounded by the straight line x = y and the parabola $x = y^2$. (10)

Fig.1.

Fig.2.

Fig. 3.

Fig. 4.

Fig. 6.

2ND HALF

Answer Q. 7 & any three from the rest.

- Q.7.(a) Explain the following terminologies:
 - (i) Particle, (ii) Kinetics, (iii) Kinematics.
 - (b) Deduce and state the principle of conservation of momentum in rectilinear motion of a particle.
- Q.8. A system of weights and pulleys is arranged in a vertical plane as shown in Figure Q.8. Neglecting friction and the inertia of the pulleys, find the acceleration of each weight if their magnitudes are in the ratio w_a : w_b : $w_c = 3:2:1$.
- Q.9. A flat car can roll without resistance along a horizontal track as shown in Figure Q.9. Initially, the car together with a man of weight w is moving to the right with speed v_0 . What increment of velocity Δv will the car obtain if the man runs with speed u relative to the floor of the car and jumps off at the left?
- Q.10. In Figure Q.10, the bob of a conical pendulum of length *l* and weight *w* describes a horizontal circle defined by the equations

 $x = a \cos wt$ $y = a \sin wt$ where a is the radius of the circular path and w is constant. Prove that the tension T in the string is constant during such motion and find its magnitude.

- Q.11. The arrangement shown in Figure Q.11 rotates about the vertical axis yy at constant rpm. The weight of the vertical bar AB, hinged at C, is 3 N and the weight of the ball at the top is 6 N. When the system is at rest, the initial tension in the spring DE is 20 N. At what rpm will contact at A be broken? Assume the frame and bar AB to be absolutely rigid.
- Q.12. What is the minimum uniform speed that a man and motor cycle of weight w can have in going around the inside of a vertical circular drum of radius r (Figure Q.12) in order to prevent slipping down the wall if the coefficient of friction between the tyres and wall is μ ? When the motor cycle is running at this speed, what angle α must its middle plane make with the horizontal in order to prevent slipping down?

Figure Q9

All dimensions in mm

Figure Q11

Figure Q 12