Indian Institute of Engineering Science and Technology, Shibpur B.E. 8th Semester (Aerospace Engineering) End Semester Examinations, May 2014 <u>Computational Solid Mechanics (AE 802)</u>

Full Marks: 70

Time: 3 hrs

Answer any five (5) questions All questions are of equal value

- 1. Brief on the following (any four):
 - (a) Pascal Triangle
 - (b) C^0 and C^1 element
 - (c) Consistent nodal loads
 - (d) Subparametric and Superparametric formulation
 - (e) Jacobian
- 2. A prismatic cantilever bar of length l and cross-sectional area A and made up of material of constant modulus of elasticity E is subjected to a linearly varying load of intensity q = cx. Considering the displacement field $u = a_1x + a_2x^2 + a_3x^3$, deduce the solution in the form $u = \frac{c}{6AE}(3l^2x x^3)$.
- 3. A prismatic cantilever bar of length l and cross-sectional area A and made up of material of constant modulus of elasticity E is subjected to a linearly varying load of intensity q = cs. Discretizing the bar into 3 elements, prove that the tip displacement of the bar is $\frac{9cL^3}{AE}$, where $L = \frac{l}{3}$. Use FE form of Rayleigh Ritz method.
- 4. (a) Discuss over the convergence requirement of FE analysis
 - (b) What is patch test? Brief on the utility of patch test
- 5. Starting from fundamentals, derive the expressions for the shape functions of a quadratic bar element, through isoparametric formulation. Also derive the expression for Jacobian for the same.
- 6. What are the differences between Serendipity elements and Lagrangian elements? Detail on the process of deriving shape functions of a quadratic plane element of serendipity family.
- 7. With any suitable example discuss the application of coordinate transformation in deriving stiffness matrix for (i) inclined support in a plane truss (ii) joining dissimilar element.
- 8. Differentiate between the thin plate deformation as per Kirchhoff theory and Mindlin theory. Starting from fundamentals, derive the expression of strain energy using Kirchhoff element.
- 9. Starting from fundamentals, derive the FE form of Galerkin method for a uniform bar subjected to axial loading of q = q(x).