BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

B.E. 6th Semester (AE) Final Examination, April 2013 Theory of Propulsion (AE-603)

Full Marks: 70 Time: 3 hrs

i) Answer questions 1 and 2 (20 marks) and question 3 (30 marks). ii) Notations used carry their conventional senses.

- 1. For an ideal ramjet cycle is flying at $M_{\infty}=4.0$, $p_{\infty}=0.8bar$, $T_{\infty}=260K$. Further data given are: $(c_pT_{\infty})/\Delta H_p=0.0061$, fuel-air mass ratio $f=f_{stoich}=0.05$.
- (a) Draw the characteristic points schematically in a (T, s) chart;
- (b) Obtain the (stagnation, static) states (temperature, pressure) at the characteristic points in (T,s) chart;
- (c) Compute flow velocities at inlet and nozzle exhaust;
- (d) Compute specific thrust;
- (e) Compute specific heat addition, heat rejection and work done;
- (f) Compute η_{th} , η_p and overall efficiency.
- 2. Let's consider the following specification of the Canadian straight jet engine from United Aircrafts Canadian Ltd. (UACL), model no. JT115D-4, mass flow rate = 34.1 kg/s, overall compression ratio = 10.0, turbine inlet temperature = 960°C. Consider running the engine near the sea level with ambient pressure = 1.0 bar, ambient temperature = 298K, approaching flow velocity = 250 m/s. Compute
- (a) the gas state (temperature, pressure) at the characteristic points of the engine for an ideal cycle analysis;
- (b) the thrust, specific thrust;
- (c) heat added, heat rejected and work output;
- (d) thermodynamic and propulsive efficiency and overall efficiency; and
- (e) draw the cycle in a (T,s) chart.
- 3. Consider the flow process in a single stage axial compressor. Let air at pressure $p_1 = 1bar$, temperature $T_1 = 288K$, and relative velocity $w_1 = 130m/s$ enter the rotor with entry angle $\beta_1 = 30^\circ$. Let azimuthal speed $u = u_1 = u_2 = 250m/s$. Also, let $c_{1m} = c_{2m} = c_1$ and $c_2 = w_1$. Compute $c_{1m} = c_{2m}$, c_{1u} , c_{2u} , w_{1u} , w_{2u} , w_1 , w_2 , w_1 , w_2 , w_1 , w_2 , w_2 , and degree of reaction \hat{r} . Draw the blades schematically. With efficiency = 1, compute the pressure and temperature at the end of rotor and stator.