Indian Institute of Engineering Science and Technology, Shibpur BE (Aero) Part III 6th Semester Final Examination, 2014

High Speed Aerodynamics (AE 601)

Time: 3 hours

Full Marks: 70

Answer any five of the following.

The questions are of equal value.

Compressible flow table can be obtained on demand

And is to be returned after use

- 1. A normal shock wave is standing in the test section of a supersonic wind tunnel. Upstream of the wave $M_1 = 3$, $p_1 = 0.5$ atm, and $T_1 = 200$ K. Find M_2 , p_2 , T_2 and u_2 downstream of the wave. Also show that these properties satisfy the Hugoniot equation for a calorically perfect gas.
 - 2. a) Show that when heat is added pressure increases for a supersonic flow.
 - b) Show that for subsonic inlet flow the effect of friction on the downstream flow is such that velocity increases.
 - 3. An incident shock wave with wave angle = 30^{0} impinges on a straight wall. If the upstream flow properties are $M_1 = 2.8$, $p_1 = 1$ atm, and $T_1 = 300$ K calculate the pressure, temperature, Mach number, and total pressure downstream of the reflected wave.
 - 4. Consider a supersonic flow with an upstream Mach number of 4 and pressure of 1 atm. The flow is first expanded through an expansion corner with $\theta = 15^0$, and then compressed through a compression corner with equal angle $\theta = 15^0$ so that it returns to its original upstream direction. Calculate the Mach number and pressure downstream of the compression corner.
 - 5. Consider a convergent-divergent nozzle with an exit to throat area ratio of 3. The inlet reservoir pressure is 1 atm and the exit static pressure is 0.5 atm. For this pressure ratio, a normal shock will stand somewhere inside the divergent portion of the nozzle. Calculate the location of the shock wave.
 - 6. a) Consider the flow through a convergent-divergent duct with an exit-to-throat area ratio of 2. The reservoir pressure is 1 atm, and the exit pressure is 0.95 atm. Calculate the Mach numbers at the throat and at the exit.
 - b) Consider the flow through a convergent-divergent duct with an exit-to-throat area ratio of 1.6. Calculate the exit-to-reservoir pressure ratio required to achieve sonic flow at the throat, but subsonic flow elsewhere.
 - 7. a) Derive Euler's equation for conservation of linear momentum for an inviscid flow applicable to steady irrotational flow.
 - b) Derive Crocco's theorem. Show that an inviscid steady flow behind a bow shock is rotational.
 - 8. Show that following nonlinear equation is valid for transonic flow with small perturbations:

$$(1-M_0^2)\frac{\partial^2 p}{\partial n^2} + \frac{\partial^2 p}{\partial j^2} + \frac{\partial^2 p}{\partial z^2} = M_0^2 \frac{r+1}{\sqrt{c}} \frac{\partial p}{\partial n} \frac{\partial^2 p}{\partial n^2}$$