Bengal Engineering and Science University, Shibpur B.E. 5th Semester (Aerospace Engineering) Final Examinations, December 2012 Numerical Methods and Computational Tools (AE 503)

Full Marks: 70

Time: 3 hrs

Answer any five(5) questions All questions are of equal value

- 1.(a) Using direct method, derive the element stiffness matrix of a uniform truss element, arbitrarily oriented in the x-y plane.
 - (b) What are the properties of global stiffness matrix? Explain in brief, different approaches of imposing boundary conditions within global stiffness matrix.
- 2.(a) What are shape functions? Describe its properties.
 - (b) Write down the shape functions with shape diagrams of (i) two noded linear element (ii) three noded quadratic bar element (iii) four noded bilinear plane element.
- 3.(a) Given $\frac{dy}{dx} = 1 + y^2$, where y = 0 when x = 0. Using 4th order Runge-Kutta method, compute y(0.2), y(0.4), y(0.6). Using ABM method compute y(0.8).
- (b) Explain with example, the differences between IVP & BVP.
- 4. Solve the BVP, $\frac{d^2y}{dx^2} y = 0$ with y(0) = 0 and y(2) = 3.62686, taking step size 0.2. The exact solution being $y = \sinh x$, compute the error in each step.
- 5. Solve, using Crank Nicholson scheme, $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the initial condition, $u = \sin \pi x$ at t = 0 for $0 \le x \le 1$ and the boundary conditions u = 0 at x = 0 and x = 1 for t > 0. Take h = 0.2, $\lambda = 1$ and compute the values of u at the internal mesh points up to two time steps.
- 6. How the Gauss quadrature is different from closed Newton-Cotes quadrature? Compute $GL_3(f)$ for the integral $\frac{1}{\pi} \int_0^{\pi} \cos(0.6 \sin(t)) dt$
- 7. Use the recursive trapezoidal rule to compute the approximations T(0), T(1), T(2) and T(3) for the integral $\int_{1}^{5} \frac{dx}{x}$. Also compute the sequential approximations S(1), S(2), S(3) and S(2), S(3) for the same integral. In each case, compute the amount of deviation from the exact result of the integral.
- 8. Consider the following systems of equation: 4x 8y + z = -21 Solve using Jacobi method and Gauss-4x y + z = 7

Siedel method, taking same initial guess and for 5 iterations.