## BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E. 4<sup>th</sup> Semester (Aerospace Engineering) Final Examination, 2012

Sub.: Introduction to Heat and Mass Transfer Code: AE 403

Full Marks: 70

Answer any five questions.

Time: 3 hrs.

1.a. Define the critical thickness of insulation.

b. Calculate the critical radius of insulation for asbestos (k = 0.17 W/m<sup>0</sup>C) surrounding a pipe and exposed to room air at 20°C with h = 3.0 W/m<sup>2</sup>°C. Calculate the heat loss from a 200°C, 5.0 cm diameter pipe when covered with the critical radius of insulation and without insulation.

2.a. What is meant by a lumped capacity? What are the physical assumption necessary for a lumped-capacity unsteady-state analysis to apply?

- b. A steel ball [ specific heat (c) = 0.46 kJ/kg<sup>6</sup>C; k = 35 W/m<sup>6</sup>C ] 5.0 cm in diameter and initially at a uniform temperature of 450°C is suddenly placed in a controlled environment in which the temperature is maintained at 100°C. The convection heat-transfer co-efficient is 10 W/m<sup>2</sup> °C. Calculate the time required for the ball to attain a temperature of 150°C.
- 3.a. Using Planck's equation derive the Stefan-Boltzmann equation for emissive power of a black surface.
  - b. Prove that  $E_{b\lambda}$  will be maximum when  $\lambda_m \tau = 2900 \ \mu^0$ -K.
- 4.a. Derive an expression for the heat exchange by radiation between two black surface elements.
  - b. Calculate the shape factor  $F_{1-2}$  between a small area  $A_1$  and a parallel plane circular disc  $A_2$ .  $A_1$  is located on the axis of the disc and the semi-vertex angle of the cone formed with the disc as base and  $A_1$  as the vertex is  $\alpha$ .
- 5.a. What is meant by a thermal boundary layer? Define the bulk temperature. How is it used?
- b. An aircraft flies at an altitude where the temperature  $60^{\circ}$ C and pressure is 0.08 atm. The air speed is 900 km/hr. The wing tank contains fuel at  $20^{\circ}$ C, keeping the surface at this temperature. Assuming the effect of curvature to be small, determine the Reynold's number at the wing tip of wing is 3 m wide. Also determine the locations from the leading edge where Re = 5 x 10<sup>5</sup>. If  $C_{fx} = 0.059$  x Re<sup>-0.2</sup> determine the value of local heat transfer co-efficient. [ At  $T_f = 20^{\circ}$ C and P = 0.08 atm. from. Table : P = 1.395 x 0.08 kg/m<sup>3</sup>;  $\mu = 16.18$  x  $10^{-6}$  N-S/m<sup>2</sup>; x = 3 m; k = 22.79 x  $10^{-3}$  W/mK;  $P_r = 0.716$  ]

6.a. How is a modified Grashog number defined for a constant heat of lux condition on a vertical plate?

b. A low speed wind tunnel is to be designed for tests up to Re =  $5 \times 10^5$  with air at 0.8 atm and  $20^{\circ}$ C. The model length is restricted to 0.3 m. If the test section is 0.45 m<sup>2</sup>, determine the mass flow required. Check whether the boundary layer on the wall will affect the test. The tunnel length is 1.5 m. [ The properties are to be obtained at  $20^{\circ}$ C;  $\rho = 1.205 \text{ kg/m}^3$ ;  $\mu = 18.14 \times 10^{-6} \text{ N-S/m}^2$  ]

- 7.a. When is the LMTD method most applicable to heat-exchanger calculation?
  b. Water at the rate of 68 kg/min is heated from 35 to 75°C by an oil having a specific heat of 1.9 kJ/kg°C. The fluids are used in a counterflow double-pipe heat exchanger and the oil enters the exchanger at 110°C and leaves at 75°C. The overall heat transfer coefficient is 320 W/m² °C. Calculate the heat-exchanger area.
- 8.a. What advantage does the effectiveness NTU method have over the method?

  b. A heat exchanger is used to heat an oil in the tubes ( C = 1.9 kJ/kg<sup>0</sup>C ) from 15<sup>0</sup>C to 85<sup>0</sup>C. Blowing across the outside of the tubes is steam which enters at 130<sup>0</sup>C and leaves at 110<sup>0</sup>C with a mass-flow of 5.2 kg/s. The overall heat transfer co-efficient is 275 W/m<sup>2</sup> oc and C (sp. heat) for steam is 1.86 kJ/kg<sup>0</sup>C. Calculate the surface area of the heat exchanger. [ Take correction factor (F) = 0.97 ].