Bengal Engineering and Science University, Shibpur B.E. 4th Semester (Aerospace Engineering) Final Examinations, April 2013 Aerospace Structure – I (AE 402)

Full Marks: 70

Time: 3 hrs

Answer any five(5) questions

- 1. What is the plane strain condition? Starting from the fundamentals derive the expression of Beltrami-Michell equation for plane stress. 03 + 11
- 2. The component of stress at a point is given by $\sigma_y = (5xyz + 3y), \sigma_z = (x^2y + y^2z), \sigma_x = (3xy^2z + 2x), \tau_{xy} = 0, \tau_{yz} = \tau_{zx} = (3xy^2z + 2xy)$. Determine whether those components of stress satisfy equilibrium equations or not at the point (3, 2, -4). If not then, determine the suitable body force required at this point so that these stress components become under equilibrium.
- 3. (a) Explain complete and incomplete tension field beam
 - (b) The beam shown in Fig. Q3 is assumed to have a complete tension field web. If the c/s area of each stiffener and flange are 275 mm² and 325 mm² respectively and the elastic section modulus of each flange is 750 mm³, determine the maximum stress in a flange and also whether or not the stiffener will buckle. Assume web thickness 1.5 mm, second moment of area of a stiffener about an axis in the plane of the web 1875 mm⁴, and $E = 7 \times 10^4$ MPa.
- 4. (a) State the principle of virtual work
 - (b) Using the principle of virtual work, calculate the vertical deflection of the joint B in the truss shown in Fig. Q4. The c/s area of each member is 1800 mm^2 and modulus of elasticity for the material of the members is 200000 MPa.
- 5. Using the principle of stationary value of TPE, derive the expression for the critical load for a long column, hinged at both ends. Show a Southwell Plot for the experimental determination of the elastic buckling load of an imperfect column schematically, indicating salient values.

 12 +02
- 6. (a) Establish the principle of interchangeability between strain energy and complementary energy.
- (b) A plane, pin-jointed framework consists of 6 bars forming a rectangle ABCD, 4 m x 3 m with two diagonals as shown in Fig. Q6. The c/s area of each bar is 200 mm^2 and the frame is unstressed when the temperature of each member is the same. Due to local conditions the temperature of one of the 3 m long members is raised by 30° C. Determine the resulting forces in all the members if the coefficient of linear expansion α of the bars is 7×10^{-6} per °C. Take E = 200000 MPa.
- 7. Using stationary principle of total complementary energy, compute the vertical displacements of the quarter and mid-span points **B** and **C** of the simply supported beam ABCD of length **L** and flexural rigidity **EI** loaded, as shown in Fig. Q7.
- 8. A circular fuselage frame, as shown in Fig. Q8 supports a load P which is reacted by a shear flow q. Prove that the distribution of bending moment over the frame follows the equation $M = \frac{\Pr}{2\pi} \left(1 \frac{\cos \theta}{2} \theta \sin \theta \right)$.

Fig. Q8