INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR B.E. 4TH SEMESTER (AE) FINAL EXAMINATIONS, 2014 Viscous Fluid Flow (AE 401)

Time: 3 hrs Full Marks: 70

(i) Answer any five questions

(ii) **Do not** write anything on this question paper

- 1. Consider steady incompressible flow of a constant-property Newtonian fluid within the annular gap between two infinitely long concentric cylinders of radii R_1 (inner) and R_2 (outer). The cylinders rotate in the same direction with angular velocities ω_1 (inner) and ω_2 (outer). Solve the Navier-Stokes system of equations to determine the radial distribution of the tangential velocity. Also, find the ratio ω_1/ω_2 for which the flow is irrotational.
- a) For flow past a solid sphere, using dimensional arguments show that the drag-coefficient becomes independent of Re_d (Reynolds number) at large Re_d (> 1000).
 - b) Discuss the techniques of delaying boundary layer separation.

c) Consider two-dimensional stagnation point flow on a flat plate; use the results of scale analysis to show that the boundary layer thickness remains constant along the wall (x direction). Plot the qualitative variation of wall shear stress with x. 2+2

- 3. Derive the equation for conservation of linear momentum for a newtonian incompressible flow in the x-direction. State and apply all the assumptions required. 11+3
- 4. Consider steady, incompressible, two-dimensional, laminar boundary layer flow along a flat surface. Assume a polynomial of the fourth degree for the velocity function in terms of the dimensionless distance from the wall $\eta = y/\delta$, i.e.

$$\frac{u}{U} = f(\eta) = a + b\eta + c\eta^2 + d\eta^3 + e\eta^4,$$

applicable in the range $0 \le \eta \le 1$. Here, U is the velocity of the uniform flow at upstream.

a) Utilize the following boundary conditions to determine the constants a, b, c, etc.

at
$$y=0$$
: $u=0$, $\frac{\partial^2 u}{\partial y^2}=0$; and at $y=\delta(x)$: $u=U$, $\frac{\partial u}{\partial y}=0$, $\frac{\partial^2 u}{\partial y^2}=0$

- b) Using Von Karman momentum integral relation estimate the variation of local boundary layer thickness δ/x , and displacement thickness δ^*/x with local Reynolds number (Re_x) . Also, determine the total skin-friction drag on one side of plate if its length and width are L and b, respectively.
- 5. A flat plate of essentially infinite width and breadth is suddenly accelerated to a constant velocity U_0 in its own plane beneath a viscous fluid. The fluid is at rest far above the plate. Making appropriate assumptions set up the governing differential equation and boundary conditions for finding the velocity field u in the fluid. Transform the equation into an ordinary differential equation and solve it.

6

- 6. a) Consider steady fully-developed flow through a circular tube. Derive Darcy's equation for frictional head loss. Is this equation valid in turbulent flow?

 6+1
 - b) Applying angular momentum conservation to an infinitesimally small control volume (rectangular parallelepiped), show that stress tensor is symmetric. Clearly mention all the assumptions involved.

 6+1
- 7. a) Consider steady, incompressible, two-dimensional, laminar boundary layer on a flat plate subjected to zero pressure gradient. Show that the dimensionless velocity profiles will be self-similar at sufficiently far downstream of the leading edge only if

$$\frac{U_{\infty}\delta}{v}\left(\frac{d\delta}{dx}\right)$$
 = constant

where, U_{∞} is free stream velocity, ν is kinematic viscosity, and δ is *characteristic thickness* of boundary layer. Reduce the boundary layer equation into an ordinary differential equation and express the boundary conditions in terms of similarity variables.

b) A jet plane having a wing area of 17.2 m^2 flies at a speed of 685 km/h when its engines develop 7350 KW. 65% of this power is used to overcome the aerodynamic drag. If the drag is 31.5% of the total lift force generated by the wings, find (i) the total weight of the plane, (ii) C_D and C_L . (assume air density = 0.72 kg.m^3)

Important relations/equations in Cylindrical Coordinates

Continuity:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_\theta) + \frac{\partial}{\partial z}(v_z) = 0$$

Convective time derivative:

$$\mathbf{V} \cdot \nabla = v_r \frac{\partial}{\partial r} + \frac{1}{r} v_\theta \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z}$$

Laplacian operator:

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$

The r-momentum equation:

$$\frac{\partial v_r}{\partial t} + (\mathbf{V} \cdot \nabla)v_r - \frac{1}{r}v_\theta^2 = -\frac{1}{\rho}\frac{\partial p}{\partial r} + g_r + \nu \left(\nabla^2 v_r - \frac{v_r}{r^2} - \frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta}\right)$$

The θ -momentum equation:

$$\frac{\partial v_{\theta}}{\partial t} + (\mathbf{V} \cdot \nabla)v_{\theta} + \frac{1}{r}v_{r}v_{\theta} = -\frac{1}{\rho r}\frac{\partial p}{\partial \theta} + g_{\theta} + \nu \left(\nabla^{2}v_{\theta} - \frac{v_{\theta}}{r^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta}\right)$$

The z-momentum equation:

$$\frac{\partial v_z}{\partial t} + (\mathbf{V} \cdot \nabla)v_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z + \nu \nabla^2 v_z$$

$$\epsilon_{rr} = \frac{\partial v_r}{\partial r} \qquad \epsilon_{\theta\theta} = \frac{1}{r} \left(\frac{\partial v_{\theta}}{\partial \theta} + v_r \right)$$

$$\epsilon_{zz} = \frac{\partial v_z}{\partial z} \qquad \epsilon_{\theta z} = \frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z}$$

$$\epsilon_{rz} = \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \qquad \epsilon_{r\theta} = \frac{1}{r} \left(\frac{\partial v_r}{\partial \theta} - v_{\theta} \right) + \frac{\partial v_{\theta}}{\partial r}$$

where

Viscous stress components:

$$au_{rr} = 2\mu\epsilon_{rr}$$
 $au_{\theta\theta} = 2\mu\epsilon_{\theta\theta}$ $au_{zz} = 2\mu\epsilon_{zz}$
 $au_{r\theta} = \mu\epsilon_{r\theta}$ $au_{\thetaz} = \mu\epsilon_{\theta z}$ $au_{rz} = \mu\epsilon_{rz}$

Angular-velocity components:

$$\omega_r = \frac{1}{r} \frac{\partial v_z}{\partial \theta} - \frac{\partial v_\theta}{\partial z}$$

$$\omega_\theta = \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}$$

$$\omega_z = \frac{1}{r} \frac{\partial}{\partial r} (rv_\theta) - \frac{1}{r} \frac{\partial v_r}{\partial \theta}$$