INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR
B.E. 4™ SEMESTER (AE) FINAL EXAMINATIONS, 2014
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(1) Answer any five questions

(ii) Do not write anything on this question paper

1. Consider steady incompressible flow of a constant-property Newtonian fluid within the
annular gap between two mﬁmtely long concentric cylinders of radii R, (inner) and R,
(outer). The cylinders rotate in the same direction with angular velocities ®, (inner) and w;
(outer).. Solve the Navier-Stokes system of equations to determine the radial distribution of
the tangential velocity. Also, find the ratio ®;/m, for which the flow is irrotational. 1143

2. a) For flow past a solid sphere, using dimensional arguments show that the drag-coefficient
becomes independent of Rey (Reynolds number) at large Req (> 1000). 4

b) Discuss the techniques of delaying boundary layer separation. 6 .

c) Consider two-dimensional stagnation point flow on a flat plate; use the results of scale
analysis to show that the boundary layer thickness remains constant along the wall (x
direction). Plot the qualitative variation of wall shear stress with x. 2+2

3. Derive the equation for conservation of linear momentum for a newtonian incompressible
flow in the x-direction. State and apply all the assumptions required. 11+3

4. Consider steady, incompressible, two-dimensional, laminar boundary layer flow along a fiat
surface. Assume a polynomial of the fourth degree for the velocity function in terms of the
dimensionless distance from the wall 5 (= y/9), i.e.

(—L;=f(77) =a+bn+cr’ +di +ery',

applicable in the range 0<7<1. Here, U is the velocity of the uniform flow at upstream.
a) Utilize the following boundary conditions to determine the constants a, b, c, etc.

at y=0: u=0, —=0; and aty=6&(x): u=U, —=0, —=0 3

b) Using Von Karman momentum integral relation estimate the variation of local boundary
layer thickness d/x, and displacement thickness d'/x with local Reynolds number (Re,). Also,
determine the total skin-friction drag on one side of plate if its length and width are L and b,
respectively. 8+3

5. A flat plate of essentially infinite width and breadth is suddenly accelerated to a constant
velocity U, in its own plane beneath a viscous fluid. The fluid is at rest far above the plate.
Making appropriate assumptions set up the governing differential equation and boundary
conditions for finding the velocity field # in the fluid. Transform the equation into an
ordinary differential equation and solve it. 5+9
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6. a) Consider steady fully-developed flow through a circular tube. Derive Darcy’s equation for
frictional head loss. Is this equation valid in turbulent flow? 6+1

b) Applying angular momentum conservation to an infinitesimally small control volume
(rectangular parallelepiped), show that stress tensor is symmetric. Clearly mention all the
assumptions involved. 6+1

7. a) Consider steady, incompressible, two-dimensional, laminar boundary layer on a flat plate
subjected to zero pressure gradient. Show that the dimensionless velocity profiles will be
self-similar at sufficiently far downstream of the leading edge only if

) ( dd)
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where, U, is free stream velocity, v is kinematic viscosity, and & is characteristic thickness

of boundary layer. Reduce the boundary layer equation into an ordinary differential equation
and express the boundary conditions in terms of similarity variables. 9

b) A jet plane having a wing area of 17.2 m? flies at a speed of 685 km/h when its engines
develop 7350 KW. 65% of this power is used to overcome the aerodynamic drag. If the drag
is 31.5% of the total lift force generated by the wings, find (i) the total weight of the plane,
(ii) Cp and Cy. (assume air density = 0.72 kg.m?) 5
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Important relations/equations in Cylindrical Coordinates

Continuity:
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Convective time derivative:
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Viscous stress components:
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