Bengal Engineering and Science University, Shibpur B. E. (Aero.) Part-II 4th Semester Final Examination, 2013

Viscous Fluid Flow (AE 401)

Time: 3 Hrs. Full Marks: 70

All questions are of equal value Answer any five from the following Questions

- 1. Derive the equation of the principle of the conservation of linear momentum for an incompressible laminar flow in the θ -direction. State and apply all the assumptions required.
- 2. a) Reduce the conservation of linear momentum equation for an incompressible laminar flow so that it becomes applicable to a flow between two parallel plates. State and apply all the assumptions required.
 - b) For incompressible Couette flow find out the limiting expression of pressure gradient above which back flow will be established.
- 3. In a slipper bearing arrangement show that bearing of a load is not possible if the surfaces holding flow in between are held parallel to each other.
 - b) Find out the position under the carriage where linear flow is established.
- 4. If a new coordinate system (x', y') is obtained from original coordinate system (x, y) by a rotation through an ϕ angle of 45° , verify the invariants of the rates of strain that is

$$\begin{aligned}
& \mathcal{C}_{xx'} + \mathcal{C}_{yy'} = \mathcal{C}_{xx} + \mathcal{C}_{yy} \\
& \mathcal{C}_{xx'} \mathcal{C}_{yy'} - \gamma_{xy'}^2 / 4 = \mathcal{C}_{xx} \mathcal{C}_{yy} - \gamma_{xy}^2 / 4
\end{aligned}$$

For the flow u = ay, v = 0

- 5. Derive the expressions for transformation of stress components due to rotation of the axes about the origin in two dimensions.
- 6. a) Assuming a cubic boundary layer velocity profile derive the expressions for displacement thickness, momentum thickness and coefficient of drag for boundary layer flow over a flat plate held parallel to the flow.

b) Consider a smooth flat plate of 1.5 m length. The Reynolds number based on length is 4 X 10^6 . Determine the boundary layer thickness at the trailing edge and coefficient of drag. Take critical Reynolds number 5 X 10^5 . Also determine critical length from the leading edge beyond which the boundary layer becomes turbulent. Take frees-tream velocity 50 m/s and $\rho_{\infty} = 1.23 \text{ kg/m}^3$ and $\mu_{\infty} = 1.789 \text{ X } 10^{-5} \text{ kg/(m)(s)}$

- 7. a) Derive the ordinary differential equation due to Blasius for the two dimensional boundary layer flow without any pressure gradient.
 - b) Using the results in the table below for the above equation find out the expression for displacement thickness (δ^*) .

$\eta = y\sqrt{(V_{\infty}/(vx))}$	f	$f = u/V_{\infty}$	f''
0.0	0.0	0.0	0.33206
1.0	0.16557	0.32979	0.32301
2.0	0.65003	0.62977	0.26675
3.0	1.39682	0.84605	0.16136
4.0	2.30576	0.95552	0.06424
5.0	3.28329	0.99155	0.01591