Bengal Engineering and Science University, Shibpur B. E. (Aero.) Part-II 4th Semester Final Examination, 2012

Viscous Fluid Flow (AE 401)

Time: 3 Hrs. Full Marks: 70

All questions are of equal value Answer any five from the following Questions

- 1. a) Derive the equation of the principle of the conservation of linear momentum for an incompressible laminar flow in the r-direction. State and apply all the assumptions required.
 - b) Derive the equation of the principle of the conservation of mass in cylindrical coordinate system.
- 2. a) Reduce the conservation of linear momentum equation for an incompressible laminar flow so that it becomes applicable to a flow between two parallel plates. State and apply all the assumptions required.
 - b) Derive the expression for velocity distribution for the above flow.
- 3. a) Derive the expression for velocity distribution in a slipper bearing arrangement.
 - b) Show that the coefficient of friction does not depend on viscosity of the fluid in a slipper bearing arrangement.
- 4. Verify the following invariant for two dimensional stress components:

a.
$$(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2 = (\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2$$

b. $\sigma_{xx} + \sigma_{yy} = \sigma_{xx} + \sigma_{yy}$

- 5. a) Derive the expression for third degree polynomial for velocity profile of a incompressible boundary layer flow with non zero pressure gradient.
 - b) Show that the Pohlhausen Parameter (Λ) for the above flow is limited by $-6 \le \Lambda$ to prevent boundary layer separation.

Bengal Engineering and Science University, Shibpur B. E. (Aero.) Part-II 4th Semester Final Examination, 2012

Viscous Fluid Flow (AE 401)

Time: 3 Hrs. Full Marks: 70

- 6. a) Assuming a quadratic boundary layer velocity profile derive the expressions for displacement thickness, momentum thickness and coefficient of drag for boundary layer flow over a flat plate held parallel to the flow.
 - b) Consider a NACA 2412 airfoil of 1.5 m chord. The Reynolds number based on chord is 3.1 X 10^6 . Determine the boundary layer thickness at the trailing edge and coefficient of drag. Take critical Reynolds number 5 X 10^5 . Also determine critical length from the leading edge beyond which the boundary layer becomes turbulent. Take freestream velocity 50 m/s and ρ_{∞} = 1.23 kg/m³ and μ_{∞} = 1.789 X 10^{-5} kg/(m)(s)
- 7. a) Derive the ordinary differential equation of the two dimensional boundary layer flow if the velocity at the edge of the boundary layer is assumed to be proportional to a power of distance along the boundary layer.
 - b) Based on the von Karman Integral Relation, determine the local friction coefficient for a flow over a flat plate held parallel to the flow.
 - c) Derive the expression for velocity profile where separation is prevented by boundary layer suction.