BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

B.ARCH. 7TH SEMESTER FINAL EXAMINATION, 2011 Energy Efficient Architecture (AR 704)

Full Marks: 35 Time: 2 Hours

- A. Figures in the margin indicate full marks for the question.
- B. Use only one answer script

Answer Question No. 6 and any Three from the rest.

- 1. Write Short notes on any two of the following:
 - i. Building Automation System as a part of Integrated Building Management System
 - ii. Energy Conservation Building Code 2007 in respect of its Scope, Applicable building systems and Exemptions
 - iii. Fixing of standard solar photovoltaic (SPV) modules on building roof or open ground
 - iv. Measures taken before construction for Green Buildings in respect of Soil and landscape conservation; and, Health and well being

2x4 = 8

2.

- a. Name the different states of energy contained in fossil fuel.
- b. Define 'Calorific Value' and 'Efficiency' with reference to (a) above.
- c. Write a brief note on scoring system of *TERI-GRIHA*, a primary rating system in India for Green buildings.

2+3+3=8

3.

- a. Mention the merits and demerits of various mechanical heating systems in a tabular form.
- b. Write the salient points on design and installation (orientation, tilt etc.) of active solar collectors.

4+4=8

4.

- a. What are the major limitations in the assumptions of heat transfer under steady state conditions?
- b. What are the different levels of cooling for a building?
- c. Discuss any one of Convective Cooling and Radiant Cooling with its working principles and applicability.

2+2+4=8

5.

- a. What are the four inter-related components in passive solar buildings?
- b. Describe with annotated sketches *one* major type of passive solar system and its salient features.

3+5=8

6.

- a. A wall has a total area of 8 m² of which 2 m² are windows. The U-values are 0.75 W/m² degC for the masonry work and 2.8 W/m² degC for the glazing. If the area of the window is doubled, calculate the percentage change in average U-value for the wall.
- b. A room has the above external wall (original configuration, before change) and its air temperature is maintained at 26°C when the outside temperature is 38°C. Calculate the boundary temperature on the internal surface of the wall. The internal surface resistance is 0.123 m²degC/W.
- c. The cooling load on an air-conditioning system is 5.0 kW for maintaining indoor temperature at 26°C. If the supply air temperature is 16°C and the air inlet velocity is to limited to 2 m/sec, calculate the size (Area and dimension) of the inlet opening.

3+4+4=11