Contents

63

66

Preface		
Syllabus		
	Module I	
	Modale I	
CHAPTER 1.	Introduction to Propositional Calculus	
1.1	Introduction	
1.2	Five basic Connectives	
1.3	Statement Formulas and Truth Tables	
1.4	Tautology and Contradiction	
1.5	Equivalence of Formulas	
1.6	Equivalent Formulas or Logical Equivalences	
1.7	Normal Forms : DNF and CNF	
1.8	Tautological Implication	
1.9	Valid Arguments	
1.10	Predicates	
1.11	Quantifications	
1.12	Negation of a Quantified Statement Function	
1.13	Free and Bound Variables	
1.14	Rules of Inference for Quantified Statements	
Multi	ple Choice Questions	
Short	Answer Questions	
Proble	ems	
	Module II	
CHAPTER 2.	Theory of Numbers	
2.1	Introduction	
2.2	Principle of Mathematical Induction	
2.3	Divisibility Theory	
2.4	Euclidean Algorithm for Finding $gcd(a, b)$	
₽.1	Taomoun Tagorium for 1 mains 800 (0,0)	

2.5

Prime Numbers

Miscellaneous Examples

xii

2.6	Congruences		70
2.7	Applications of Congruences		77
2.8	Residue Classes		79
2.9	Linear Congruences		81
Mult	tiple Choice Questions		85
Prob	lems	•••	88
	Module II		
CHAPTER 3.	Posets and Lattices		90–114
3.1	Partial Ordering Relations		90
3.2	Partially Ordered Set (POSet)	•••	92
3.3	Lattices		99
3.4	Sublattices		103
3.5	Some special Lattices		104
Mult	iple Choice Questions	•••	109
Prob	lems		113
	Module III		
CHAPTER 4.	Combinatories		115–166
4.1	Introduction	•••	115
4.2	Two Basic Principles of Counting		115
4.3	Permutations and Combinations	•••	118
	Illustrative Examples-I	•••	122
	Illustrative Examples-II	•••	137
4.4	The Pigeonhole Principle	•••	144
4.5	The Principle of Inclusion and Exclusion		146
4.6	An Alternative Form of the Principle of Inclusion and Exclusion	•••	148
4.7	The Number of Onto Functions	•	149
4.8	Derangements	•••	15 9
	Illustrative Examples–III	•••	153
	ise—4A	•••	158
	iple Choice Questions	•.••	160
Exerc	ise—4B	•••	162
	Module III		
CHAPTER 5.	Recurrence Relations		167–199
5.1	Introduction		167
5.2	Recurrence Relation and its Solution	•••	167
5.3	Formulation (or modelling) of Different Counting Problems in Terms of		
	Recurrence Relations		168
5.4	Linear Recurrence Relation with Constant Coefficients	•••	171
5.5	Solution of Linear Recurrence Relations with Constant Coefficients by		
	Iterative Method	•••	171
	Illustrative Examples-I	•••	171

5.6	Solution of Linear Recurrence Relations with Constant Coefficients by		
	Characteristic Roots Method	•••	175
	Illustrative Examples-II	•••	177
	Illustrative Examples-III	•••	179
5.7	Solution of Linear Recurrence Relations with Constant Coefficients by		
	Generating Functions Method	•••	184
	Illustrative Examples-IV	•••	186
Multi	ple Choice Questions	•••	193
Probl	ems	•••	195
	Module IV		
CHAPTER 6.	Graph Colouring		200-234
6.1	Chromatic Number	•••	200
6.2	Chromatic Number of a Complete Graph (K_n)	•••	202
6.3	Chromatic Number of a Circuit (C_n)	•••	204
6.4	Chromatic Number of a Bipartite Graph $(K_{m,n})$	•••	206
6.5	Upper Bounds of Chromatic Numbers	•••	207
6.6	Rules for Finding Chromatic Number of a Graph G	•••	209
6.7	Lower Bounds of Chromatic Numbers	•••	210
6.8	Perfect Graph	•••	214
6.9	Chromatic Polynomial		215
6.10	Four and Five Colour Theorems		218
6.11	Applications of Graph Colourings		220
	Miscellaneous Examples	•••	221
Multi	ple Choice Questions	•••	228
Probl	ems	•••	233
	Module IV		
CHAPTER 7.	Matchings		235-246
7.1	Introduction	•••	235
7.2	Matchings: Definitions	•••	236
7.3	Perfect Matchings	•••	237
7.4	Matchings in Bipartite Graphs	•••	238
7.5	Matrix Method for Finding Perfect (or, Complete) Matching	•••	239
7.6	Hall's Marriage Theorem	•••	241
Exerc	ises	•••	244
EXAMINATION PAPER			247-250
INDEX			251–254